The Role of Type 4 Phosphodiesterases in Generating Microdomains of cAMP: Large Scale Stochastic Simulations
نویسندگان
چکیده
Cyclic AMP (cAMP) and its main effector Protein Kinase A (PKA) are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE) activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30). The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons.
منابع مشابه
Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy.
RATIONALE Cyclic nucleotides are second messengers that regulate cardiomyocyte function through compartmentalized signaling in discrete subcellular microdomains. However, the role of different microdomains and their changes in cardiac disease are not well understood. OBJECTIVE To directly visualize alterations in β-adrenergic receptor-associated cAMP and cGMP microdomain signaling in early ca...
متن کاملElectricity Procurement for Large Consumers with Second Order Stochastic Dominance Constraints
This paper presents a decision making approach for mid-term scheduling of large industrial consumers based on the recently introduced class of Stochastic Dominance (SD)- constrained stochastic programming. In this study, the electricity price in the pool as well as the rate of availability (unavailability) of the generating unit (forced outage rate) is considered as uncertain parameters. Th...
متن کاملA mathematical analysis of second messenger compartmentalization.
Intracellular compartmentalization of second messengers can lead to microdomains of elevated concentration that are thought to be involved in ensuring signaling specificity. Most experimental evidence for this compartmentalization involves the second messenger adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). One possible way of creating these compartments, support...
متن کاملThe molecular machinery for cAMP-dependent immunomodulation in T-cells.
cAMP inhibits Src-family kinase signalling by PKA (protein kinase A)-mediated phosphorylation and activation of Csk (C-terminal Src kinase). The PKA type I-Csk pathway is assembled and localized in membrane microdomains (lipid rafts) and regulates immune responses activated through the TCR (T-cell receptor). PKA type I is targeted to the TCR-CD3 complex during T-cell activation via an AKAP (A-k...
متن کاملLayers of organization of cAMP microdomains in a simple cell.
Based on a variety of single-cell measurements, the notion that cAMP microdomains exist in cells is being increasingly embraced. The cellular and molecular underpinnings of this organization are also steadily being revealed. A dependence of Ca(2+)-sensitive ACs (adenylate cyclases) in HEK-293 cells (human embryonic kidney cells) on capacitative Ca(2+) entry is enforced by their presence in lipi...
متن کامل